On Weakly Compact Subsets of Banach Spaces
نویسنده
چکیده
Introduction. The two sections of this note are independent, but they are related by the fact that both use the results of [5 ] to obtain information on the properties of weakly compact sets in Banach spaces. In the first section we prove some results on a class of compact sets which is believed to include all weakly compact subsets of Banach spaces. We are interested in the properties of the nonmetrizable sets of this form. (Our results become trivial in the metrizable case.) We show in particular that such sets have a dense subset consisting of Gt points. Weakly compact sets are known to possess many properties which are similar to those of metrizable spaces (Eberlein's Theorem, for example). Our result exhibits a new property of this kind. In the second section we show that in a separable reflexive space, every weakly compact set is the intersection of finite unions of cells.
منابع مشابه
Uniform Convergence to a Left Invariance on Weakly Compact Subsets
Let $left{a_alpharight}_{alphain I}$ be a bounded net in a Banach algebra $A$ and $varphi$ a nonzero multiplicative linear functional on $A$. In this paper, we deal with the problem of when $|aa_alpha-varphi(a)a_alpha|to0$ uniformly for all $a$ in weakly compact subsets of $A$. We show that Banach algebras associated to locally compact groups such as Segal algebras and $L^1$-algebras are resp...
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کامل